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Abstract
We study the correlation and response dynamics of trap models of glassy
dynamics, considering observables that only partially decorrelate with every
jump. This is inspired by recent work on a microscopic realization of such
models, which found strikingly simple linear out-of-equilibrium fluctuation–
dissipation relations in the limit of slow decorrelation. For the Barrat and
Mézard model with its entropic barriers we obtain exact results at zero-
temperature T for arbitrary decorrelation factor κ . These are then extended to
nonzero T, where the qualitative scaling behaviour and all scaling exponents can
still be found analytically. Unexpectedly, the choice of transition rates (Glauber
versus Metropolis) affects not just prefactors but also some exponents. In the
limit of slow decorrelation even complete scaling functions are accessible in
closed form. The results show that slowly decorrelating observables detect
persistently slow out-of-equilibrium dynamics, as opposed to intermittent
behaviour punctuated by excursions into fast, effectively equilibrated states.

PACS numbers: 05.45.−a, 75.10.Nr

1. Introduction

Trap models [1–11] have been recognized in recent years as powerful models of glassy,
non-equilibrium dynamics. They describe the motion of a system through its phase space,
simplified to a picture of thermally activated hopping in a landscape of traps of energy E. The
simplest case is that of mean-field trap models, where all traps are taken as mutually accessible
and the rate for a transition between two traps depends only on their energies. An alternative
motivation for considering trap models is provided by the problem of diffusion in disordered
media; here the traps are located in a physical space of low dimension (say, d = 1, 2 or 3) and
the spatial organization of the traps has to be accounted for [12–15].

Our motivation in this paper arises from a recent interesting study of a microscopic
realization of trap models on the basis of the number partitioning problem [16, 17]. Each
partition of N numbers between two piles can be associated with the state of a system of N
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Ising spins si = ±1, and an energy function is then defined to measure how far from optimal the
partition is. The dynamics considered by Junier and Bertin in [17] is that at every step K spins
are selected and have their values randomized; the new state is then accepted with a probability
given by a Metropolis acceptance factor. Junier and Bertin argue that this system evolves in a
manner analogous to the trap model considered by Barrat and Mézard [2]: a new state or trap
is selected essentially at random at every step, and accepted according to the Metropolis (or
Glauber, see below) probability. To justify the assumption that each new state is effectively
random one requires K � 1; for finite K there is a crossover time, exponentially large in K,
beyond which this simplification no longer applies [17]. In contrast to the usual assumption
made in trap models, however, an observable such as the (randomly staggered) magnetization
does not decorrelate fully with every transition between states. Instead, it decorrelates by
a factor κ = 1 − K/N , since only K out of the N spins are updated. Junier and Bertin
showed that the consequences of this are rather profound, and most interesting in the limit of
slow decorrelation κ → 1 (K � N). In particular, they found that fluctuation–dissipation
(FD) relations between response and correlation functions had the simple straight-line form
expected for systems with well-defined (effective) temperatures [18–21]. The corresponding
temperature was equal to the bath temperature T down to half the glass transition temperature
Tg; for lower T, it remained pinned to Teff = Tg/2. This unusual transition between apparent
equilibrium and non-equilibrium dynamics within the glass phase was interpreted as due to a
change from activated to entropic slowing down.

Our aim in this paper is to complement the work of [17], which used mainly numerical
simulation and simple scaling estimates, with an analytical study of the dynamics of slowly
decorrelating observables in trap models. This will allow us, for example, to verify and refine
estimates of scaling exponents in [17], but also yield more detailed insights into the nature
of the dynamics. In our approach it is also a simple matter to compare different choices of
the transition rates (Metropolis and Glauber) and we will see that this has some unexpected
consequences, with effects not just on prefactors but also scaling exponents.

To allow a direct comparison with the work of [17] we focus mainly on the Barrat and
Mézard model itself; the extension of this to slowly decorrelating observables is defined in
section 2. General expressions for correlation and response functions are then derived in
section 3, and simplified in section 4 for the interesting scaling regime of long times. As a
prelude to the analysis of slowly decorrelating observables proper, we consider in section 5
first the standard, fully decorrelating case κ = 0 at nonzero temperature, extending previous
analytical results for the FD behaviour in the limit T → 0 [11]. Section 6 then looks at
arbitrary decorrelation factors κ , but first at zero temperature, where closed form results can
still be obtained. The most general case of κ > 0 and T > 0 is analysed in section 7,
where we also provide results from numerical solutions of the integral equations for the
scaling functions. In section 8, finally, we extend the analysis to more general trap models
with a multiplicative dependence of the transition rates on the applied field [10]; this covers
in particular Bouchaud’s original trap model [1] with its purely activated dynamics. Section 9
summarizes the results and discusses the dynamics of slowly decorrelating observables in a
wider context.

2. Model definition

Motivated by the arguments discussed in the introduction, we consider a modified Barrat and
Mézard model [2] where the magnetizations before and after a jump between two traps are at
least partially correlated. Transitions can still take place between arbitrary trap energies, but
are more likely between traps with magnetizations that are sufficiently close to each other.
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The dynamics of the system is described by the probability P(E,m, t) that the system is
in a trap with energy E and magnetization m at time t. Of course m is in principle a generic
observable, but we continue to use the term magnetization for definiteness. We assume that,
starting from a trap with energy E′ and magnetization m′, a jump to a new trap with energy E
and magnetization m is attempted with probability ρ(E)ρ(m|m′). The first factor is simply the
density of states of trap energies, reflecting the assumption that transitions between arbitrary
energy levels are possible. The factor ρ(m|m′), on the other hand, can incorporate various
degrees of correlation between m′ and m; if m is typically close to m′, then decorrelation
of m over time is slow. The factorization ρ(E)ρ(m|m′) assumes that E and m are selected
independently, which in a spin system is a reasonable assumption if m is some staggered
magnetization that is uncorrelated with the energy. In a continuous-time description, the time
evolution of P(E,m, t) is then governed by the master equation

∂

∂t
P (E,m, t) = −�(E,m)P (E,m, t)

+
∫

dE′ dm′ρ(E)ρ(m|m′)w(E − E′ − hm + hm′)P (E′,m′, t). (1)

Here w(�E) is the probability with which a proposed transition is accepted. In writing the
energy change �E = E − hm − (E′ − hm′) on which this depends we have allowed for the
presence of a field h thermodynamically conjugate to m, in order to be able to deduce response
properties of m. We consider primarily the Glauber form w(�E) = 1/[1 + exp(β�E)] of
the acceptance probability that was used in previous theoretical studies [2, 11, 22], but also
compare with the Metropolis choice, w(�E) = 1 for �E < 0 and w(�E) = exp(−β�E)

for �E � 0, which is common in simulations [17, 22]. Here and throughout β = 1/T denotes
the inverse temperature. In the first term on the right of (1), finally, we have defined

�(E,m) =
∫

dE′ dm′ρ(E′)ρ(m′|m)w(E′ − E − hm′ + hm), (2)

which can be thought of as the total rate of leaving a trap with energy E and magnetization m.
Our dynamics should be capable of describing thermodynamic equilibrium at high

temperatures, and thus obey detailed balance. In line with our assumption of independence of
energies and magnetizations in an attempted jump, let us assume the overall density of states
also factorizes into ρ(E)ρ(m). It is then easy to check that the dynamics (1) obeys detailed
balance as long as ρ(m′|m)ρ(m) is symmetric under interchange of m′ and m. To be specific,
we take ρ(m) to be a Gaussian with zero mean and unit variance, and ρ(m′|m) a Gaussian with
mean κm and variance 1 − κ2. (Since we will only need the second-order statistics of m and
m′, this assumption in fact constitutes no loss of generality.) The original Barrat and Mézard
model then corresponds to Glauber dynamics with κ = 0, while in the opposite limit κ = 1
the magnetization remains frozen to its initial value. For intermediate values, m decorrelates
by a factor κ with each jump, and we expect the interesting behaviour seen by Junier and
Bertin [17] to occur in the limit of slow decorrelation κ → 1 (but keeping κ < 1).

3. General expressions for correlation and response

For the calculation of the correlation function of m, the field can be set to zero. The master
equation (1) then simplifies to

∂

∂t
P (E,m, t) = −�(E)P (E,m, t) +

∫
dE′ dm′ρ(E)ρ(m|m′)w(E − E′)P (E′,m′, t) (3)
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with

�(E) =
∫

dE′ρ(E′)w(E′ − E). (4)

The propagator P(E,m, t − tw|Ew,mw) obeys this equation with the initial condition
P(E,m, 0|Ew,mw) = δ(E − Ew)δ(m − mw) and gives the correlation function as

C(t, tw) =
∫

dE dm dEw dmw mmwP(E,m, t − tw|Ew,mw)ρ(mw)P (Ew, tw). (5)

Here we have used that, for h = 0, P (Ew,mw, tw) = ρ(mw)P (Ew, tw); this is true as long as
the initial condition has the same structure, e.g. for a quench from thermal equilibrium at high
temperature. From (3), the function m̄(E, t − tw|Ew,mw) = ∫

dm mP(E,m, t − tw|Ew,mw)

obeys, using
∫

dm mρ(m|m′) = κm′,
∂

∂t
m̄(E, t |Ew,mw) = −�(E)m̄(E, t |Ew,mw) + κ

∫
dE′ρ(E)w(E − E′)m̄(E′, t |Ew,mw).

(6)

Because this equation is linear, the factor mw from the initial condition m̄(E, 0|Ew,mw) =
mwδ(E − Ew) pulls through and we can write m̄(E, t |Ew,mw) = mwm̄(E, t |Ew, 1) ≡
mwm̄(E, t |Ew), dropping the constant argument 1. The reduced magnetization m̄(E, t |Ew)

then obeys
∂

∂t
m̄(E, t |Ew) = −�(E)m̄(E, t |Ew) + κ

∫
dE′ρ(E)w(E − E′)m̄(E′, t |Ew) (7)

with m̄(E, 0|Ew) = δ(E −Ew). For our purposes more useful, however, is the corresponding
backward equation
∂

∂t
m̄(E, t |Ew) = −�(Ew)m̄(E, t |Ew) + κ

∫
dE′m̄(E, t |E′)ρ(E′)w(E′ − Ew). (8)

This is because the correlation function can be written as

C(t, tw) =
∫

dEwM(t − tw|Ew)P (Ew, tw) (9)

with

M(t − tw|Ew) =
∫

dE m̄(E, t − tw|Ew). (10)

By integrating (8) we see that this obeys
∂

∂t
M(t |Ew) = −�(Ew)M(t |Ew) + κ

∫
dE′M(t |E′)ρ(E′)w(E′ − Ew) (11)

with M(0|Ew) = 1; the forward equation (7), on the other hand, would yield an expression
for ∂M/∂t which still involves m̄(E, t |Ew). The physical meaning of M(t − tw|Ew) is as
follows: if we start in a state with energy Ew and magnetization mw, then mwM(t − tw|Ew) is
the average magnetization a time t − tw later.

For the case κ = 0, the solution of (8) and (11) is trivial:

m̄(E, t |Ew) = δ(E − Ew) exp(−�(Ew)t) (12)

M(t |Ew) = exp(−�(Ew)t) (13)

and one retrieves the standard result for the hopping correlation function [2, 10, 11, 22]. For
κ > 0, the Laplace transform (LT) of (8) can be easier to work with; with s conjugate to t, this
reads

[s + �(E)] ˆ̄m(E, s|Ew) − δ(E − Ew) = κ

∫
dE′ρ(E)w(E − E′) ˆ̄m(E′, s|Ew). (14)
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By the same reasoning that lead to (9), the response to a field impulse of amplitude h and
duration �t , applied at time tw, can be written as

h�tR(t, tw) =
∫

dE dm mM(t − tw|E)P (E,m, tw + �t). (15)

The change in P(E,m, tw + �t) from its value without the field (the latter does not contribute
to R because it is symmetric in m) is

�P(E,m, tw + �t) = �t

∫
dEw dmw

× [ρ(E)ρ(m|mw)�w(E − Ew − hm + hmw)ρ(mw)P (Ew, tw)

− ρ(Ew)ρ(mw|m)�w(Ew − E − hmw + hm)ρ(m)P (E, tw)], (16)

where �w(E − Ew − hm + hmw) = w(E − Ew − hm + hmw) − w(E − Ew) is the change
of the acceptance probability caused by the field. Expanding this to linear order in h as
�w(E − Ew − hm + hmw) = h(mw − m)w′(E − Ew) and carrying out the integrations over
m and mw gives

R(t, tw) = (1 − κ)

∫
dE dEwM(t − tw|E)

× [−w′(E − Ew)ρ(E)P (Ew, tw) − w′(Ew − E)ρ(Ew)P (E, tw)]. (17)

Note that w′(·) is negative since the acceptance probability w(·) decreases with increasing
energy change; thus both terms in the expression for the response are positive. Explicitly, we
have for the Glauber case −w′(�E) = β exp(β�E)/[1 + exp(β�E)]2 and for Metropolis
−w′(�E) = �(�E)β exp(−β�E), with �(·) the usual Heaviside step function.

Summarizing, to calculate the correlation and response we need P(E, tw), i.e. the solution
of the original Barrat and Mézard model without a field, and M(t − tw|Ew) from (11). The
dependence on κ is only through the latter.

4. Long-time scaling

From now on we consider mostly an exponential density of trap energies, ρ(E) = exp(E) for
E < 0; the glass transition temperature is then Tg = 1. We will also focus on the long-time
scaling limit where memory of the initial conditions is lost and typical trap depths are large,
|E| � 1. The exit rate from such deep traps is

�(E) =
∫ 0

−∞
dE′ eE′

1 + eβ(E′−E)
= eE

∫ e−E

0

dz

1 + zβ
≈ eE

∫ ∞

0

dz

1 + zβ
= c eE (18)

with c = πT/ sin(πT ). For Metropolis rates, one has similarly

�(E) =
∫ E

−∞
dE′ eE′

+
∫ 0

E

dE′ eE′
e−β(E′−E) ≈

∫ E

−∞
dE′ eE′

+
∫ ∞

E

dE′ eE′
e−β(E′−E) (19)

giving �(E) = cM eE with

cM = 1 +
1

β − 1
= β

β − 1
= 1

1 − T
. (20)

If the timescales in the system are set by its age at long times, then typical values of �(E)—
and therefore of eE—at time t should be of order t−1. This suggests the scaling ansatz
P(E, t) = eEtP(eEt), where P(ω) is the normalized probability distribution of ω = eEt .
The zero-field master equation (3) for P(E,m, t) gives after integration over m

∂

∂t
P (E, t) = −�(E)P (E, t) +

∫
dE′ρ(E)w(E − E′)P (E′, t). (21)
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Inserting the scaling form for P and neglecting the upper cutoff E′ = 0 in the integral
transforms this into an integro-differential version for P(ω):

ωP ′(ω) = −(1 + cω)P(ω) +
∫

dω′ P(ω′)
1 + (ω/ω′)β

. (22)

For Metropolis rates, one only needs to replace c by cM and [1 + (ω/ω′)β]−1 by
min{(ω/ω′)−β, 1}, and all statements for Glauber rates below can be translated to the
Metropolis case in an analogous way unless specified otherwise.

From (22), it follows directly for ω → 0 that P(0) = 1, as also found by Bertin [22] who
used 1/ω as the scaling variable. For large ω, on the other hand, i.e. relatively shallow traps,
one expects effective equilibration and therefore P(ω) ∼ e−βE ∼ ω−β . (There is no density
of states factor here because the density of states with respect to eE is uniform on the allowed
range 0 < eE < 1.) At T = 0, this power-law tail becomes an exponential as we will see
below. For a numerical solution at T > 0, it is useful to rewrite (22) as

ωP(ω) =
∫ ω

0
dω′f (ω′) e−c(ω−ω′), f (ω) =

∫
dω′ P(ω′)

1 + (ω/ω′)β
. (23)

For later we also note the following relation between successive moments of P(ω), obtained
by multiplying (22) with ωn (−1 < n < β − 1) and integrating over ω∫

dω ωn+1P(ω)∫
dω ωnP(ω)

= n

(
c −

∫
dz

zn

1 + zβ

)−1

= n

c − cn

. (24)

The constant cn in this expression generalizes c ≡ c0:

cn =
∫

dz
zn

1 + zβ
= πT

sin[πT (n + 1)]
. (25)

For Metropolis rates, the analogous expression for the moment ratio (24) is n
/(

cM − cM
n

)
with

cM
n =

∫
dz zn min{z−β, 1} = β

(n + 1)(β − n − 1)
. (26)

We next turn to the long-time behaviour of m̄(E, t − tw|Ew). By arguments similar to
those above, this should have the scaling

m̄(E, t − tw|Ew) = γU(γ, τ ), γ = eE/eEw , τ = (t − tw) eEw . (27)

The scaling form for M then follows directly as

M(t − tw|Ew) =
∫

dE m̄(E, t − tw|Ew) = M(τ ), M(τ ) =
∫

dγ U(γ, τ ). (28)

The dependence on τ = (t − tw) eEw makes sense because, for |Ew| � 1, eEw sets the scale
of the exit rate from traps of depth Ew. The dynamical equation (11) becomes in the scaling
regime

M′(τ ) = −cM(τ ) + κ

∫
dτ ′

τ

M(τ ′)
1 + (τ ′/τ)β

. (29)

This is similar in form to (22) for P(ω); accordingly, there is again an alternative version
suitable for numerical iteration:

M(τ ) = e−cτ + κ

∫ τ

0
dτ ′g(τ ′) e−c(τ−τ ′), g(τ ) =

∫
dτ ′

τ

M(τ ′)
1 + (τ ′/τ)β

. (30)

The scaling of the correlation and response functions can now be deduced. For the
correlation (9) one gets

C(t, tw) = C((t − tw)/tw), C(x) =
∫

dωM(xω)P(ω), (31)
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which displays the expected simple aging scaling with x = (t−tw)/tw, implying that relaxation
timescales grow linearly with the age. Similarly, the scaling form of the response function
(17) is R(t, tw) = t−1

w R(x) with

TR(x) = (1 − κ)

∫
dωM(xω)r(ω) (32)

r(ω) =
∫

dω′ P(ω) + P(ω′)
[1 + (ω/ω′)β][1 + (ω′/ω)β]

(33)

= T cωP(ω) +
∫

dω′ P(ω′)
[1 + (ω/ω′)β][1 + (ω′/ω)β]

, (34)

where we have used the integral∫
dω′

[1 + (ω/ω′)β][1 + (ω′/ω)β]
= ω

∫
dz zβ

(1 + zβ)2
= T ω

∫
dz z

(
− d

dz

)
1

1 + zβ
= T cω.

(35)

For Metropolis rates, one has similarly

r(ω) =
∫

dω′[P(ω)�(ω′ − ω)(ω′/ω)−β + P(ω′)�(ω − ω′)(ω/ω′)−β] (36)

= T cMωP(ω) +
∫ ω

dω′P(ω′)(ω/ω′)−β. (37)

We will need the asymptotic behaviour of r(ω) below. For small ω, one can approximate
P(ω) in (33) by 1. But the denominator ensures that ω and ω′ are of the same order, so the
same argument can be applied to P(ω′). This gives

r(ω) = 2T cω (38)

in the limit of small ω; for Metropolis rates, one finds r(ω) = 2T cMω instead. For large ω,
on the other hand, where P(ω) ∼ ω−β , one has

r(ω) = P(ω)

∫
dω′ 1 + (ω/ω′)β

[1 + (ω/ω′)β][1 + (ω′/ω)β]
= P(ω)

∫
dω′ 1

1 + (ω′/ω)β
= cωP(ω)

(39)

giving the scaling r(ω) ∼ ω1−β ; the Metropolis case again differs only by c → cM.
The susceptibility or step response χ(t, tw) = ∫ t

tw
dt ′R(t, t ′) follows from (32) as

χ(t, tw) =
∫ t

tw

dt ′
1

t ′
R((t − t ′)/t ′) = χ(x), χ(x) =

∫ x

0

dx ′

1 + x ′R(x ′) (40)

and again depends only on x = (t − tw)/tw, exhibiting simple aging scaling. Finally, the
fluctuation–dissipation ratio (FDR) scales in the same manner:

X(t, tw) = T R(t, tw)

(∂/∂tw)C(t, tw)
= X (x), X (x) = − TR(x)

(1 + x)C′(x)
. (41)

We recall that X = 1 corresponds to equilibrium, where the fluctuation–dissipation theorem
holds; out of equilibrium, it then makes sense to define Teff = T/X as an effective temperature
[18–21]. This quantity allows a straightforward physical interpretation only when it is time-
independent, at least within a given time-sector; the one of interest here is t − tw ∼ tw. Since
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the definition (41) can be written as X = −(∂T χ/∂tw)/(∂C/∂tw), such time independence
corresponds to a straight-line FD plot of χ(t, tw) versus C(t, tw). More generally, if tw is used
as the parameter varying along the curve [9, 23, 24] then X/T is the negative slope of such an
FD plot.

5. Standard Barrat and Mézard model at T > 0

We first consider the case κ = 0, i.e. the standard Barrat and Mézard model, at arbitrary
temperature T (<Tg = 1) and with an exponential density of states. One then has, from
(13), (18) and (28), M(τ ) = exp(−cτ). The scaling forms (31) and (32) of correlation and
response function thus simplify to

C(x) =
∫

dω e−cxωP(ω) (42)

and

TR(x) =
∫

dω e−cxωr(ω). (43)

From this the large-x asymptotics can be obtained directly: only the region ω ∼ 1/x contributes
to the integrals so that in C(x) we can set P(ω) ≈ P(0) = 1, giving

C(x) = 1

cx
(44)

as found previously by Bertin [22]. For R(x), using (38) leads similarly to

TR(x) = 2T

cx2
. (45)

The FDR from (41) thus behaves asymptotically as X (x) = 2T/x. In terms of C this
gives X = −T dχ/dC = 2T cC for small C. The limiting FD plot therefore always starts
parabolically at the top, χ(C) = χ(0) − cC2 for C → 0. The FDR itself decays to zero
asymptotically, X (x → ∞) = 0 for all T < Tg, as in the case of the Bouchaud trap model
[4, 9].

More interesting is the short-time FDR X (x → 0). Naively, this is from (41)

X (x → 0) = TR(0)

−C′(0)
=

∫
dω r(ω)∫

dω cωP(ω)
= 2T c

∫
dω ωP(ω)

c
∫

dω ωP(ω)
= 2T (46)

using (42) and (43) with x = 0 as well as (34) and (35) (or (37) for the Metropolis case). The
effective temperature associated with this FDR is therefore Teff = 1/2, independently of T.
However, this conclusion only holds for T < 1/2. For larger T, the integral

−C′(x) =
∫

dω cω e−cxωP(ω) (47)

is actually divergent for x = 0 because of the ω−β tail of P(ω). For small but nonzero x, the
exponential acts as a cutoff at ω ∼ 1/x so that −C′(x) ∼ (1/x)2−β = xβ−2, in agreement with
the short-time singularity in C identified in [22]. The response TR(x) = ∫

dω e−cxωr(ω) has
the same small-x singularity because r(ω) ∼ ω1−β for ω → ∞. In fact, for small x one can
replace r(ω) by its asymptotic form (39) to get

TR(x) =
∫

dω cω e−cxωP (ω) = −C′(x). (48)

This shows that the short-time FDR is, for T > 1/2,

X (x → 0) = 1. (49)
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Figure 1. Numerically calculated scaling distributions P(ω) for Glauber dynamics at T = 0.2,
0.4, 0.6, 0.8 (bottom to top on the right). The dashed lines indicate the expected asymptotic scaling
P(ω) ∼ ω−β .

In this temperature range, the FD relation between χ and C is therefore always of a pseudo-
equilibrium form in its initial part, with a (negative) slope equal to 1/T . This matches
continuously with the constant slope of 1/Teff = 2 found above for T < 1/2.

Intuitively, one can understand the occurrence of pseudo-equilibrium behaviour for
T > 1/2 by looking at the average hopping rate. This is

�(t) =
∫

dE �(E)P (E, t) = t−1
∫

dω cωP(ω) (50)

where the second form applies in the scaling regime. For T < 1/2, the integral converges
and �(t) ∼ 1/t as one would naively expect from our scaling assumption: typical relaxation
times are ∼t , thus typical rates are ∼1/t . For T > 1/2, however, the integral is divergent at
the upper end and one has to take into account the cutoff at E = 0, corresponding to ω = t ,
leading to �(t) ∼ t1−β . This is entirely dominated by the very small probability of being in
shallow traps with atypically fast relaxation rates of O(1). Now the response R(t, tw) and
the initial decay (∂C/∂tw)(t, tw) of the correlation function are sensitive only to hops taking
place between tw and t. For small t − tw these are precisely the same events that dominate
�(t). Since they are in the ‘effective equilibrium’ tail of P(ω), it is then not surprising to find
a pseudo-equilibrium form of the FD relation.

Figure 1 shows some numerically calculated scaling distributions P(ω) for Glauber rates;
these exhibit the expected asymptotic behaviour ∼ω−β for large ω. To avoid end effects in the
iterative numerical solution of (23), we stored not P and f themselves but P(ω)(1 + ω)β and
similarly f (ω)(1 + ω)β−1. These functions have nonzero limits for ω → ∞ (and ω → 0) and
so are suitable for evaluating the required integrals over ω = 0 . . . ∞.

Figure 2 displays the resulting FD plots of χ versus C; these are valid in the limit of long
times which we have already taken by working in the scaling regime. (To get reliable results
for χ(x), one has to do the x ′-integration from (40) before the ω-integration in (32); otherwise
the singularity of R(x) for x → 0 at T > 1/2 leads to problems.) The initial slopes agree
well with the theoretical predictions, as shown by the dashed lines. The asymptotic slopes for
C → 0 are likewise consistent with the predicted value of 0. The inset of the figure explores
this region in more detail, showing (1 − χ)/(cC2). From the analysis above this quantity
should converge to 1 for C → 0. The numerical data are consistent with this, though for
T = 0.8 the approach to the limit is very slow. This makes sense: as T tends to Tg = 1 from
below, the FD plot approaches a straight line, and so the quadratic expansion around C = 0
will be valid in a region that shrinks to zero in the limit.
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Figure 2. Numerically calculated long-time FD relations χ(C) in the original Barrat and Mézard
model (κ = 0, Glauber dynamics). Solid lines are for T = 0 (exact [11]), 0.2, 0.4, 0.6 and 0.8 from
top to bottom; the results for T = 0 and T = 0.2 are almost indistinguishable. The dashed lines
show the theoretically predicted initial slopes (2 for T < 1/2, and 1/T for T > 1/2). The inset
graphs (1 − χ)/(cC2) versus C; our theory predicts that this quantity converges to 1 for C → 0.

One notable feature of the numerical results is that the asymptotic value χ(C = 0) is
equal to 1 for all T < 1, at least to within our numerical accuracy of around 10−5. This is as
in the Bouchaud model [10], and has been conjectured also for the Barrat and Mézard model,
on the same physical grounds [11]: the susceptibility freezes to its value at T = Tg = 1 as T is
decreased below the glass transition. It ought to be possible to confirm this result analytically,
but we have not yet found a way of doing this.

It should be noted that the FD plot is not quite T-independent for T < 1/2. While such
T-independence had been suggested by the simulations of [17], the scaling-regime numerics
shown in figure 2 clearly rule it out. Also, after a little reflection one sees that higher
derivatives of C(x) diverge for x → 0 already at lower temperatures; e.g. C ′′(x) diverges for
T > 1/3, C ′′′(x) for T > 1/4, etc.

6. Slowly decorrelating observables, T = 0

In this section and the next we consider slowly decorrelating observables, i.e. κ > 0. We
begin by analysing the zero-temperature dynamics, where a number of results can be derived
for a general density of states ρ(E) and finite times (i.e. without taking the scaling limit).

Compared to the standard case κ = 0, the additional task is to calculate m̄(E, t − tw|Ew).
At T = 0, one has w(E − E′) = �(E′ − E) and �(E) = ∫ E

−∞ dE′ρ(E′) for both Glauber
and Metropolis rates; equation (14) thus simplifies to

s + �(E)

ρ(E)
ˆ̄m(E, s|Ew) − 1

ρ(Ew)
δ(E − Ew) = κ

∫ 0

E

dE′ ˆ̄m(E′, s|Ew). (51)

Differentiating wrt E gives a differential equation for m̄(E, s|Ew) as a function of E. This is
easily solved, with the result

ˆ̄m(E, s|Ew) = − 1

s + �(Ew)

∂

∂E

[
�(Ew − E) exp

(
κ

∫ Ew

E

dE′ ρ(E′)
s + �(E′)

)]

= − 1

s + �(Ew)

∂

∂E

[
�(Ew − E)

(
s + �(Ew)

s + �(E)

)κ]
. (52)
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Before we exploit this to obtain M and thence the correlation and response functions, it is worth
noting from (7) that, for the limiting case κ = 1, m̄(E, t − tw|Ew) is simply the propagator
P(E, t − tw|Ew) of the original Barrat and Mézard model without a field. Inverting the LT in
(52) thus yields the exact zero-temperature propagator

P(E, t − tw|Ew) = − ∂

∂E
[�(Ew − E) e−�(E)(t−tw)]. (53)

Applying this to tw = 0 gives as the general solution starting from an initial distribution
P(E, 0):

P(E, t) = − ∂

∂E

[
e−�(E)t

∫ 0

E

dE′P(E′, 0)

]
. (54)

At long times most of the mass of this is a low E, where the integral inside the square brackets
can be set to 1. One thus recovers P(E, t) = ρ(E)t exp[−�(E)t] as the long-time scaling
form of the distribution over trap energies, independently of the initial distribution [2]. For
an exponential density of states, ρ(E) = eE , this becomes P(E, t) = eEtP(eEt) with the
scaling function P(ω) = exp(−ω). This has an exponential tail as anticipated above, and one
easily checks that it solves the T → 0 limit of (22).

Returning now to result (52) for general κ , we obtain for the LT of M(t − tw|Ew):

M̂(s|Ew) =
∫

dE ˆ̄m(E, s|Ew) = 1

s + �(Ew)

(
s + �(Ew)

s

)κ

= s−κ [s + �(Ew)]κ−1. (55)

Inverting the LT gives a hypergeometric function

M(t − tw|Ew) = 1F1(1 − κ, 1;−�(Ew)(t − tw)). (56)

If we now specialize to the exponential distribution of trap energies, we have �(E) = eE and
so (56) is exactly of the scaling form (28) discussed above, with

M(τ ) = 1F1(1 − κ, 1;−τ) =
∞∑

k=0

(k − κ)!

(−κ)!k!2
(−τ)k. (57)

(Non-integer factorials are defined in terms of the Gamma function, a! = �(a + 1); we avoid
the use of � for such constants to prevent confusion with our exit rates �(E).) Both of these
results can also be obtained directly from the relevant equations (11) and (29) for M(t |Ew) and
M(τ ), by representing these quantities as power series in t and τ , respectively, and determining
the coefficients recursively.

From M(τ ), we get the scaling limit of the correlation function, using P(ω) = exp(−ω):

C(x) =
∫

dωM(xω)P(ω) =
∞∑

k=0

(k − κ)!

(−κ)!k!
(−x)k = (1 + x)κ−1, (58)

so that C(t, tw) has the simple long-time form C(t, tw) = (tw/t)1−κ . This result can also be
derived without recourse to series expansions: denoting M̂(·) the LT of M(τ ), we have from
(31) ∫

dx e−σxC(x) =
∫

dω ω−1M̂(σ/ω) e−ω =
∫

dx x−1M̂(x−1) e−σx, (59)

so that C(x) = x−1M̂(x−1). With M̂(x−1) = (x−1)−κ(x−1 + 1)κ−1 from (55) one gets
C(x) = (1 + x)κ−1 as before.
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Figure 3. Long-time FD plots χ(C) at T = 0, for κ = 0, 0.2, 0.4, 0.6, 0.8, 1 from bottom to top.

For the response, we note that the denominator factor in (33) tends to T ωδ(ω − ω′) for
T → 0; the same conclusion also holds in the Metropolis case (36). This gives for the scaling
function

R(x) = 2(1 − κ)

∫
dωM(xω)ωP(ω) = 2(1 − κ)

∞∑
k=0

(k + 1)(k − κ)!

(−κ)!k!
(−x)k

= 2(1 − κ)
∂

∂x
[xC(x)] = 2κ(1 − κ)(1 + x)κ−1 + 2(1 − κ)2(1 + x)κ−2. (60)

For the susceptibility this implies, from (40),

χ(x) = 2κ[1 − (1 + x)κ−1] +
2(1 − κ)2

2 − κ
[1 − (1 + x)κ−2]

= 2κ[1 − C] +
2(1 − κ)2

2 − κ
[1 − C(2−κ)/(1−κ)], (61)

where in the second equality x has been expressed in terms of C to give the long-time FD
relation χ(C). This is displayed in figure 3 for some representative values of κ . The slope
of the FD plot is −χ ′(C) = 2κ + 2(1 − κ)C1/(1−κ), with initial value −χ ′(C = 1) = 2
independently of κ , corresponding to an ‘effective short-time temperature’ of Teff = 1/2
(=Tg/2 in dimensional units). The asymptotic slope, on the other hand, is −χ ′(C = 0) = 2κ

and depends continuously on κ . In the limit κ → 1 (where C(x) = (1 + x)κ−1 decays very
slowly with x, and χ(x) grows correspondingly slowly), the FD plot becomes a straight line of
negative slope 2, suggesting that this slowly decorrelating observable measures a well-defined
Teff = 1/2. This result lends support to the straight-line FD plots found in the simulations of
Junier and Bertin [17].

For later, we note that by expressing the ratio of factorials in (57) as a Beta function
integral and then performing the sum over k one gets an alternative form for M(τ ):

M(τ ) = 1

(−κ)!(κ − 1)!

∫ 1

0
dz e−zτ z−κ(1 − z)κ−1. (62)

This implies in particular that M(τ ) = τ−(1−κ)/(κ − 1)! for large τ and κ > 0.

7. Slowly decorrelating observables, T > 0

Finally, we consider the most general case of dynamics at nonzero temperature and observables
with incomplete decorrelation (κ > 0). We focus directly on the scaling limit for a system
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with an exponential density of states; the key issue is again solving for M(τ ). For short times
this is easy: from (29), M′(0) = −c + κc and thus M(τ ) = 1 − (1 − κ)cτ + O(τ 2). From
this the initial FDR for T < 1/2 can be worked out as in (46):

X (x → 0) = TR(0)

−C′(0)
= (1 − κ)

∫
dω r(ω)∫

dω(1 − κ)cωP(ω)
= 2T . (63)

The κ-dependent factors (1 − κ) cancel, so the initial slope of the FD plot remains 2 for all κ .
Metropolis rather than Glauber rates again only replace c by cM everywhere.

For T > 1/2, the linearization in τ breaks down as before, and the integrals for R(x)

and 1 − C(x) will be dominated by large ω ∼ 1/x for x → 0. One can therefore use the
asymptotic behaviour of P(ω) ∝ ω−β and r(ω) ∝ cω1−β (with the same proportionality
constant, according to (39)) to write

1 − C(x) ∝
∫

dω[1 − M(xω)]ω−β = xβ−1
∫

dτ [1 − M(τ )]τ−β (64)

TR(x) ∝ (1 − κ)c

∫
dωM(xω)ω1−β = (1 − κ)cxβ−2

∫
dτM(τ )τ 1−β. (65)

These singularities (but not their prefactors) are the same as for κ = 0, and correspondingly
the FDR again approaches a nonzero limit for x → 0:

X (x) = − TR(x)

(1 + x)C′(x)
→ (1 − κ)c

∫
dτM(τ )τ 1−β

(β − 1)
∫

dτ [1 − M(τ )]τ−β
= (1 − κ)c

∫
dτM(τ )τ 1−β

− ∫
dτM′(τ )τ 1−β

. (66)

At first sight the value of X (x → 0) appears to depend on the precise functional form of
M(τ ). But in fact, by multiplying (29) by τ 1−β and integrating over τ one deduces∫

dτM′(τ )τ 1−β = −c

∫
dτM(τ )τ 1−β + κ

∫
dτ ′M(τ ′)

∫
dτ

τ

τ 1−β

1 + (τ ′/τ)β
. (67)

The last τ -integral evaluates to c(τ ′)1−β and this implies from (66) that X (x → 0) = 1 for
all κ (and T > 1/2). Physically, this result—which can be derived similarly for Metropolis
dynamics—is supported by the same intuition as for κ = 0: the initial response and decay
of the correlation, and hence the FDR, are dominated by the very small fraction of histories
which pass around time tw through the shallow traps near the top of the energy landscape
(E = O(1)), where an effective pseudo-equilibrium is established.

What about long-time intervals, x � 1? From the definition of the dynamics, it is clear
that C(t, tw) is the average of κj = ej ln κ over the distribution of the number of hops j between
tw and t. For κ ≈ 1, a large number j ∼ 1/(− ln κ) ≈ 1/(1 − κ) of hops is needed to get any
significant decorrelation. Across the corresponding long-time intervals the number of hops
should average out, leading to the naive prediction C ≈ exp

[
(ln κ)

∫ t

tw
dt ′�(t ′)

]
. Using (50),

this gives the estimate

C(x) = (1 + x)−η(1−κ), η = c

∫
dω ωP(ω). (68)

Intuitively, one expects that similarly M(τ ) ∼ τ−η(1−κ) for large τ . The constant η can be
evaluated explicitly, by taking the n → 0 limit of (24), giving

η = c
sin2(πT )

(πT )2 cos(πT )
= tan(πT )

πT
. (69)

The analogous expression for the Metropolis case is, using (26),

ηM = cM
∫

dω ωP(ω) = β

β − 1

(β − 1)2

β(β − 2)
= β − 1

β − 2
= 1 − T

1 − 2T
(70)
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Figure 4. Calculated values of the decay exponent λ of M(τ ) ∼ τ−λ as a function of κ . The
curves are for Glauber dynamics and T = 0, 0.2, 0.4, 0.6, 0.8 from bottom to top.

and together with (68) confirms the estimate for the correlation function scaling in equation (22)
of [17]. Both η and ηM diverge as T → 1/2 from below, signalling a breakdown of the above
naive reasoning for higher temperatures; we return to this point below. For T → 0, η and ηM

both approach unity so that M(τ ) is predicted to decay as τ−(1−κ), exactly as we found by
exact calculation for T = 0.

To find the asymptotics of M(τ ) for general T and κ , one substitutes the ansatz
M(τ ) ∼ τ−λ into (29). The lhs is then subleading and the leading terms on the rhs have to
cancel, giving the condition

c = κc−λ (71)

for λ, or equivalently κ sin(πT ) = sin[πT (1 −λ)]. For c−λ to be finite, one needs λ < 1, and
M(τ ) decreases with τ so λ > 0. In this range of λ the condition (71) has only one solution:

λ = 1 − arcsin[κ sin(πT )]

πT
. (72)

For small κ this exponent approaches 1, with λ = 1 − κ/c + O(κ2); see figure 4.
The behaviour for κ → 1, on the other hand, depends strongly on temperature. For
T < 1/2, λ = (1 − κ) tan(πT )/(πT ) = η(1 − κ) to first order in 1 − κ , exactly as the
naive argument had predicted. For higher temperatures T > 1/2, the exponent approaches
a nonzero value λ = 2 − β in the same limit. This is rather striking since at κ = 1 directly
one expects M(τ ) ≡ 1 and hence λ = 0: the limit κ → 1 is discontinuous for T > 1/2. We
discuss the physical reasons for this at first sight surprising behaviour below.

The above predictions for λ apply to the Glauber case. Using the same arguments
for Metropolis rates, one is led to the condition cM = κcM

−λ. This reads explicitly
β/(β − 1) = κβ/[(1 − λ)(β + λ − 1)], giving

λ = 1 − 1

2
β +

√
1

4
β2 − κ(β − 1). (73)

Similarly to the Glauber case, λ → 0 for κ → 1 at T < 1/2, with leading order behaviour
λ = (1−κ)(β−1)/(β−2) in agreement with (70). For T > 1/2, on the other hand, λ → 2−β

and this limit value is the same as for Glauber dynamics. In general, however, as soon as the
decorrelation of the observable in a jump is not perfect (κ > 0), the decay exponents (72)
for Glauber and (73) for Metropolis rates are different. This provides an interesting example
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where microscopic details of the assumed transition rates affect not only quantitative details
(prefactors) but also qualitative aspects (exponents) of the dynamics.

The power-law decay of M(τ ) implies similar large-x asymptotics for the response and
correlation functions, consistent with the naive expectation explained above:

C(x) ∝ x−λ

∫
dω ω−λP(ω) (74)

TR(x) ∝ (1 − κ)x−λ

∫
dω ω−λr(ω). (75)

In particular, for T > 1/2 and κ → 1, the correlation decays as C(x) ∼ x−λ with λ = 2 − β.
This exact value is consistent with the argument by Junier and Bertin [17] that the decay
exponent λ should be close to T = 1/β for T ≈ 1; to first order in 1 − T this estimate agrees
with the exact prediction. It deviates progressively for lower T, however, with the exact value
λ = 2 −β dropping to zero at T = 1/2. This is as it must be by continuity, since for T < 1/2
we found that λ vanishes for κ → 1. As a check of our theory we have also compared
the predicted exponent (73) for Metropolis dynamics with the numerical correlation function
results from figure 9 of [17] for κ = 0.9, and found very good agreement.

From the above large-x behaviour of C and R we can deduce the asymptotic FDR (41) as

X (x → ∞) = (1 − κ)
∫

dω ω−λr(ω)

λ
∫

dω ω−λP(ω)
. (76)

Using (34), one finds that the numerator integral equals T [c + (1 − λ)c−λ]
∫

dω ω1−λP(ω).
The remaining moment ratio can then be calculated from (24) with n = −λ to give

X (x → ∞) = (1 − κ)T [c + (1 − λ)c−λ]

c−λ − c
. (77)

Inserting the condition (71) determining λ simplifies this to

X (x → ∞) = T (1 − λ + κ). (78)

One can check that this expression is valid also for Metropolis rates, with the value of λ

then given by (73) instead of λ. For both Glauber and Metropolis rates the asymptotic FDR
X (x → ∞) approaches zero for κ → 0, consistent with the results for the ordinary Barrat
and Mézard model from section 5. The behaviour for κ → 1 again depends on T. For
T < 1/2, λ → 0 and thus X(x → ∞) → 2T . For T > 1/2, on the other hand, λ → 2 − β

and X(x → ∞) → 1. Both of these values are identical to the (κ-independent) short-time
FDR X (x → 0) found above. This strongly suggests that the FD plots are straight lines for
κ → 1, both above and below T = 1/2. We now proceed to show this, by considering the
FDR X (x) for general x.

To this end, it will be useful to have an expression for C′(x) that is similar in form to
R(x). Starting from (31) one has C′(x) = ∫

dωM′(xω)ωP(ω). With (29) this can be written
in terms of M(·) itself as

C′(x) = −c

∫
dωM(xω)ωP(ω) + κ

∫
dωM(xω)

∫
dω′ P(ω′)

1 + (ω/ω′)β
. (79)

The ω′-integral is, from (22), (d/dω)[ωP(ω)] + cωP(ω). The second term in this sum gives
a contribution of the same form as the first term on the rhs of (79), and after an integration by
parts

C′(x) = −c(1 − κ)

∫
dωM(xω)ωP(ω) − κx

∫
dωM′(xω)ωP(ω). (80)
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The last term is now just −κxC′(x) and we end up with the relatively simple expression

−(1 + κx)C′(x) = c(1 − κ)

∫
dωM(xω)ωP(ω), (81)

which also holds for Metropolis dynamics (c → cM). The FDR (41) then becomes a ratio of
integrals involving only M(·), rather than M(·) and M′(·) as before:

X (x) = 1 + κx

1 + x

∫
dωM(xω)r(ω)

c
∫

dωM(xω)ωP(ω)
. (82)

We can now see how this simplifies for κ → 1. For T < 1/2,M(τ ) → 1 as κ → 1 for any
fixed τ . The ω-integrals remain finite in this limit, so that

X (x) →
∫

dω r(ω)

c
∫

dω ωP(ω)
= 2T (83)

exactly as in (46): X (x) = 2T becomes independent of x, and the FD plot is therefore a
straight line of slope X/T = 2. For T > 1/2, on the other hand, M(τ ) is asymptotically a
power law τ−λ, with λ approaching 2 −β from above as κ → 1; thus for any fixed x > 0 also
M(xω) ∼ ω−λ for large ω. But r(ω) ∼ ωP(ω) ∼ ω1−β and so the integrals in (82) become
divergent at the upper end as κ → 1. They are therefore dominated by large ω-values, where
r(ω) = cωP(ω). This shows that X (x) → 1: the FD plot is again a straight line, but now of
equilibrium slope 1/T .

With similar arguments we can also work out the correlation functions for κ → 1.
Consider T < 1/2 first, and divide (81) by C(x) to get

−(1 + κx)
C′(x)

C(x)
= c(1 − κ)

∫
dωM(xω)ωP(ω)∫

dωM(xω)P(ω)
. (84)

In the limit κ → 1, we can set M → 1 again and get −d(ln C)/d(ln(1 + x)) =
c(1 − κ)

∫
dω ωP(ω) = η(1 − κ). This implies C(x) = (1 + x)−η(1−κ), exactly as the

naive argument (68) had suggested.
For T > 1/2, consider the integral on the rhs of (81). This becomes divergent at the

upper end for κ → 1 as explained above, and dominated by large ω. M(xω) can therefore be
replaced by its asymptotic form ∼(xω)−λ, and the rhs of (81) becomes proportional to x−λ,
which in the limit κ → 1 is xβ−2. (The remaining integral diverges as κ → 1, but combines
with the 1 − κ prefactor to give a finite limit.) Thus, for T > 1/2 and κ → 1,

−C′(x) ∝ xβ−2

1 + x
, C(x) = sin[π(β − 1)]

π

∫ ∞

x

dx ′ (x
′)β−2

1 + x ′ . (85)

In the expression for C(x) we have explicitly put in the proportionality constant, which follows
from the equal-time value C(0) = 1. The same result also holds for Metropolis dynamics,
since both the limit value of λ for κ → 1 and the asymptotic behaviour of P(ω) and r(ω), on
which the argument relies, are the same.

7.1. Numerical results

We solved (30) numerically to get M(τ ), using a representation which takes into account the
asymptotic behaviour τ−λ, and then evaluated correlation and response. The results for M(τ )

at T = 0.4 are shown in figure 5, and do approach the predicted asymptotes. In particular, the
slope λ of the asymptotic power law decreases to zero for κ → 1, while for T = 0.6 (figure 6)
it approaches the nonzero limit 2 − β. The dashed line shows the limiting form of M(τ ) for
κ → 1, which for T > 1/2 is nontrivial. Note that we focus on Glauber dynamics throughout
this section; graphs for the Metropolis case would look broadly similar as discussed above.
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Figure 5. Calculated M(τ ) for T = 0.4 and κ = 0 (exact), 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, from
bottom to top. Dotted lines indicate the predicted τ−λ asymptotes.
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Figure 6. Analogue of figure 5 for T = 0.6, for the same values of κ . The dashed line shows in
addition the numerically calculated limiting form of M(τ ) for κ → 1.
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Figure 7. Correlation function C(x) for T = 0.4 and the same κ as in figure 5. Dotted lines
indicate the predicted asymptotes x−λ. The inset shows C(x)/(1 + x)−λ versus x.

Figure 7 shows the scaling function C(x) of the two-time correlation at T = 0.4, again
for a range of values of κ . As expected, the asymptotic decay follows the same power law
as for M(τ ), i.e. C(x) ∼ x−λ. In the inset, we show C(x)/(1 + x)−λ to demonstrate that this
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Figure 8. Correlation function C(x) for T = 0.6 and the same κ as in figure 6; the dashed line
shows the predicted κ → 1 limit (85). Dotted lines indicate the predicted asymptotes x−λ.

0 0.2 0.4 0.6 0.8 1
C

0

0.5

1

1.5

2
χ

T = 0.4

0 0.2 0.4 0.6 0.8 1
C

T = 0.6

Figure 9. FD plots for κ = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95 1.0 (the last one being exact) from bottom
to top, at temperature T = 0.4 (left) and T = 0.6 (right).

approaches unity in the limit κ → 1. Figure 8 displays the analogous data for T = 0.6. The
predicted asymptotic behaviour is again observed, but now C(x) approaches the nontrivial
limiting form for κ → 1 predicted by (85) (dashed line).

The resulting FD plots (figure 9, left) for T = 0.4 move upwards with increasing κ as
for T = 0 and are consistent with the approach to the predicted straight line of slope 2. For
T = 0.6 (figure 9, right), the overall trend is similar, but the limiting straight line now has
slope 1/T , again as predicted.

7.2. Discussion

The results found above for the limit κ → 1 of slowly decorrelating observables provide strong
support for the arguments of Junier and Bertin [17], in particular in terms of the straight-line
FD plots and the asymptotic decay of C(x) for T < 1/2. In addition, they clarify the limiting
behaviour of C(x) for T > 1/2, both in terms of the asymptotics (∼xβ−2) and the full (and
rather simple) functional form (85). Finally, our theoretical analysis predicts how the decay
exponent λ interpolates between its value for κ = 0 (standard Barrat and Mézard model) and
the κ = 1 limit of slowly decorrelating observables, and reveals that the details of this do
depend on the choice of microscopic transition rates (Glauber versus Metropolis).

One of the most surprising findings is the discontinuity in the approach to κ = 1 for
T > 1/2: strictly at κ = 1 the correlation function cannot decay and so C(x) ≡ 1 and
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M(τ ) ≡ 1. For κ just below 1, on the other hand, we found that these scaling functions do
decay for finite values of their arguments, and approach nontrivial limit forms for κ → 1.
At first sight this seems strange: as explained above, C(t, tw) is the average of κj over the
distribution Pj (t, tw) of the number of jumps between tw and t, and as κ → 1 this average
must approach unity. Indeed, this statement is true for any fixed pair of times t and tw. The
discontinuity only arises in the limit of large times, where Pj consists of two essentially
separate parts. The first contains finite j , corresponding to histories where the trap energies
remain of the same order as the initial one: the system wanders among deep traps. The
contribution to the correlation function arising from this part of Pj is indeed continuous for
κ → 1. However, Pj also has a second part (containing a finite fraction of its probability mass)
at values of j which are divergent with tw, presumably—for consistency with the scaling of
the hopping rate—as t

2−β
w . This part arises from histories which make an excursion from deep

traps to the top of the landscape. In the limit tw → ∞, the correlation decays to zero for any
such history, as long as κ < 1 (i.e. for any small but nonzero 1 − κ). This is why the scaling
functions, which are calculated in precisely this long-time limit, are discontinuous at κ = 1.
For finite tw, one expects to see the crossover between correlation functions which essentially
do not decay, and the limiting forms calculated for κ → 1, to occur for κ-values with κt

2−β
w of

order 1, i.e. 1 − κ ∼ t
β−2
w for large tw.

This argument also tells us how to interpret the κ → 1 limit of C(x): it is the probability
of never having escaped to the shallow traps at the top of the energy landscape. It is rather
intriguing to see that this can be calculated exactly while the κ → 0 correlation, i.e. the
probability of not having jumped at all, cannot as far as we are aware.

Finally, it is interesting to see what happens to our naive estimate from above,
C ≈ exp

[
(ln κ)

∫ t

tw
dt ′�(t ′)

]
, for T > 1/2. This would give C(t, tw) = exp

[−const ×
(1 − κ)

(
t2−β − t

2−β
w

)]
which decays on subaging timescales t − tw ∼ t

β−1
w . Applied to the

entire correlation function this is plainly wrong: the correlation function must decay more
slowly as κ increases, but for κ = 0 we have simple aging, so κ > 0 must also give simple
aging or an even slower decay. We now see that the argument only applies to the decorrelation
caused by large (diverging with tw) numbers of jumps, where it predicts correctly that the
resulting contribution to the correlation function vanishes in the scaling limit. The remainder
of the correlation function remains finite (and has simple aging), however, because it relates
to the jumps among the deep traps which happen at rate ∼1/t , rather than to the total number
of jumps which is dominated by the shallow traps.

8. Bouchaud model

The dynamics of the Barrat and Mézard model can be interpreted as being slowed down by
entropic barriers at low temperature: the Glauber (or Metropolis) transition rates penalize large
energy increases, so that the system is forced to search for lower energy states of which there
are an ever decreasing number. To complete our analysis, we now compare with the Bouchaud
trap model [1], where jumps take place with rate exp(βE) independently of the energy of
the arrival trap; thus almost all jumps return the system to the top of the energy landscape.
Slow dynamics then arises purely from activation effects, i.e. the decreasing rate with which
jumps from increasingly deep traps can take place. We will be interested to know in particular
whether slowly decorrelating observables again produce straight-line FD plots.

Applying the intuitive reasoning from the previous section to the Bouchaud model, we
see that once the system has returned to the top of the landscape it will make a large number
of fast jumps, which will decorrelate the values of the observable m for any κ < 1. Thus, the
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correlation function C(x) should be completely independent of κ for 0 � κ < 1 since, in the
scaling limit, correlations are maintained only if no jumps at all take place (j = 0).

If the Bouchaud model, the natural prescription for the coupling to the field is to modify
the escape rate from a trap from exp(βE) to exp[β(E − hm)] [4, 9]. This is just the original
rate multiplied by exp(−βhm), and one is led more generally to consider an arbitrary trap
model with multiplicative rates [4, 10, 11]:

w(E′,m′ ← E,m) = eβh[(1−ζ )m′−ζm]w(E′ ← E). (86)

The notation here should be self-explanatory; the arrow points from the departure to the arrival
trap. In the absence of a field all governing equations are as before, except for the replacement
of w(E′ − E) by w(E′ ← E). The master equation then reads

∂

∂t
P (E, t) = −�(E)P (E, t) +

∫
dE′ρ(E)w(E ← E′)P (E′,m′, t) (87)

with �(E) = ∫
dE′ρ(E′)w(E′ ← E), while the magnetization decay function obeys

∂

∂t
M(t |E) = −�(E)M(t |E) + κ

∫
dE′M(t |E′)ρ(E′)w(E′ ← E) (88)

and the two-time correlation function is given by (9) as before. To get the response, one can
start again from (15). The change in P(E,m, tw + �t) from its value without a field is given
by the direct analogue of (16):

�P(E,m, tw + �t) = �t

∫
dEw dmw

× [ρ(E)ρ(m|mw)�w(E,m ← Ew,mw)ρ(mw)P (Ew, tw)

− ρ(Ew)ρ(mw|m)�w(Ew,mw ← E,m)ρ(m)P (E, tw)]. (89)

Now to linear order in h,�w(E,m ← Ew,mw) = βh[(1 − ζ )m − ζmw]w(E ← Ew).
Inserting this and integrating over mw, and then over m in (15), yields

T R(t, tw) =
∫

dE dEwM(t − tw|E){(−ζκ + 1 − ζ )ρ(E)w(E ← Ew)P (Ew, tw)

+ [ζ − (1 − ζ )κ]ρ(Ew)w(Ew ← E)P (E, tw)}. (90)

As in the case κ = 0, one can now relate the response function to derivatives of the correlation
function. From (9) together with (88) one has

∂

∂t
C(t, tw) =

∫
dE

[
−�(E)M(t − tw|E)

+ κ

∫
dE′M(t − tw|E′)ρ(E′)w(E′ ← E)

]
P(E, tw). (91)

For the derivative wrt the earlier time tw one gets similarly, by also using (87),

∂

∂tw
C(t, tw) = (1 − κ)

∫
dE dE′M(t − tw|E′)ρ(E′)w(E′ ← E)P (E, tw). (92)

This is proportional to the first term in expression (90) for the response, while the second
term in (90) is proportional to the first one in (91), bearing in mind the definition of �(E).
Altogether one gets the simple relation

T R(t, tw) = (1 − ζ )(1 + κ)
∂

∂tw
C(t, tw) − [ζ − (1 − ζ )κ]

∂

∂t
C(t, tw), (93)

which reduces to the known result [4, 10, 11] for κ = 0 as it should and applies to all trap models
with multiplicatively perturbed rates (86). At high temperatures, where a time-translation



Trap models with slowly decorrelating observables 2593

invariant equilibrium state is reached, ∂C/∂tw = −∂C/∂t . As required for consistency with
equilibrium FDT, the coefficients of these two quantities in (93) add up to unity. Out of
equilibrium at low temperatures, an equilibrium FD relation is still recovered when the second
coefficient vanishes, i.e. when ζ = κ/(1 + κ). It is easy to see that this is exactly the case
where the exit rate �(E,m) from a given state is unperturbed by the field h (to linear order),
just as for κ = 0 [10, 11]. This implies that for slowly decorrelating observables (κ → 1)

one only gets a straight-line FD plot when ζ = 1/2, i.e. when the hopping rates depend on the
difference m′ − m as they do for Glauber dynamics.

For the Bouchaud model specifically, where w(E′ → E) = exp(βE), equation (88) for
M(t |E) is easily solved by LT to give

M̂(s|E) = 1

s + eβE

(
1 +

κ eβEĜ(s)

1 − κ + κsĜ(s)

)
, Ĝ(s) =

∫
dE

ρ(E)

s + eβE
. (94)

The scaling limit for P(E, t) is reached for large t and low E with t eβE of O(1). This
corresponds to small s, of order eβE . Since Ĝ(s) ∼ sT −1 for small s, one sees that in this
regime the second term in M̂(s|E) always becomes negligible compared to the first, as long
as κ < 1. This means that the κ-dependence drops out, and M(t |E) = exp(−t eβE) in the
scaling regime. The correlation function only picks up these scaling contributions and is
therefore κ-independent as expected.

The same argument does not apply to the response, which from (93) is obviously dependent
on κ . The reason is clear from (90): the contribution from M(t − tw|E) is weighted with extra
factors of either ρ(E) or w(Ew ← E) (= eβE in the Bouchaud model). This means that the
behaviour of M(t − tw|E) for E = O(1) is dominant, and this does depend on κ .

8.1. Arguments for straight-line FD plots

The Bouchaud trap model provides a useful point of reference from which to revisit the
reasoning put forward in [17] for the emergence of straight-line FD plots in the limit κ → 1.
This has at its core the idea of considering first the change of the magnetization m during j

jumps, and then to average over the distribution of the number of jumps between tw and t.
There is no problem with this for the case of the correlation function, since in the absence of
a field the magnetization is just being ‘convected along’ with the usual trap model dynamics,
without itself affecting the dynamics.

For the susceptibility, on the other hand, the situation is somewhat more subtle. Consider a
field switched to some nonzero value (and held there) at time tw. Then one can write generally

χ = ∂

∂h

∑
j

∫
dm dmw dEw mP(m|j, h,Ew,mw, t − tw)

×Pj (h,Ew,mw, t − tw)P (Ew,mw, tw), (95)

where P(m|j, t − tw, h,Ew,mw) is the distribution of m at the end of a time interval t − tw
of constant field strength h, given that j jumps have taken place during this time and the
system started from a trap with energy Ew and magnetization mw. Pj (· · ·) is the distribution
of the number of jumps, which depends on the same variables. Finally, P(Ew,mw, tw) is the
distribution of trap energies and magnetizations at tw, which can be written as P(Ew, tw)ρ(mw)

if as we assume the field has been off up until time tw. Writing the m-average in (95) as
m̄j (h,Ew,mw, t − tw) one thus has

χ = ∂

∂h

∑
j

∫
dEw dmw m̄j (h,Ew,mw, t − tw)Pj (h,Ew,mw, t − tw)ρ(mw)P (Ew, tw). (96)
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To complete the argument of Junier and Bertin [17] two assumptions now need to be made: (A)
m̄j (h,Ew,mw, t − tw) is the same as the average of m directly after the j th jump starting from
a state with Ew and mw. (B) The distribution of the number of jumps Pj (· · ·) is independent
of mw, so that m̄j (· · ·) can be averaged separately over mw. The first assumption is in general
invalid because the fact that there has not been a further jump between the j th jump and
time t favours magnetizations m of the same sign as the field h. Indeed, in the standard
(ζ = 1, κ = 0) Bouchaud model assumption (A) would imply that m̄j = 0 for all j � 1
since the distribution of m after any jump is unbiased. But this cannot be correct since then at
long-time differences, where the probability that at least one jump has taken place approaches
1, the susceptibility χ would have to drop to zero. Assumption (B) is also in general not
correct; e.g. in the standard Bouchaud model the jump probabilities Pj clearly depend on the
value of the starting magnetization mw since the distribution of the time until the first jump
does.

There is, however, one scenario in which these objections do not apply: if the exit rate
�(E,m) from a trap of energy E and magnetization m is independent of h (and hence of m),
both assumptions (A) and (B) are correct because the field biases neither the probability of
not having jumped since the j th jump, nor the probability of j jumps having occurred. In the
Bouchaud model, this field independence of the exit rate holds when ζ = κ/(1 + κ). One then
works out easily, by considering how the Gaussian distribution of m changes with every jump,
that

m̄j (· · ·) = κjmw + βh(1 − ζ )(1 + κ)(1 − κj ). (97)

The susceptibility becomes χ = β(1 − ζ )(1 + κ)〈1 − κj 〉 = β〈1 − κj 〉, where the average is
over the distribution of jumps

∫
dEwPj (Ew, t − tw)P (Ew, tw). Since the correlation function

is C = 〈κj 〉, it follows that T χ = 1 − C and one has equilibrium FD behaviour. This is
entirely consistent with the exact relation (93).

In the Barrat and Mézard model, assumption (A) can still be justified for κ → 1: one can
show [17] that the exit rates are affected by the field via terms of O((1 − κ)h), which vanish
in the limit of slow decorrelation. One is then allowed to find m̄j from the distribution of m
directly after the j th jump, giving at low temperatures m̄j (· · ·) = κjmw + 2h(1 − κj ) [17].
However, for κ → 1 one needs a number of jumps j = O(1/(1 − κ)) to see any significant
response of the system, and similarly any significant decay of the correlation function. It is then
not clear that assumption (B) can still be justified, since the small O(1 − κ) changes of each
exit rate accumulated over this many jumps could still add up to a nontrivial mw-dependence
of Pj (t, h,Ew,mw, tw).

We note finally that, for T > 1/2 and κ → 1 in the Barrat and Mézard model, one can
state the argument for a straight-line FD plot without actually requiring assumption (B), as
discussed in [16]: histories with a finite number of jumps j do not contribute to χ because
for κ → 1 the magnetization remains pinned to its initial value, whatever the field h. On the
other hand, histories with diverging j always give the equilibrium susceptibility because they
pass through the equilibrated shallow traps at the top of the landscape. Because C is just the
probability of j being finite as argued in section 7.2, this gives the equilibrium FD relation
χ = χeq(1 − C) = β(1 − C).

9. Conclusion

We have studied trap models with observables that decorrelate slowly, by a factor κ ≈ 1 with
each jump. Our motivation was to clarify and extend with an analytical study the interesting
observations of Junier and Bertin for a spin model which leads to trap model dynamics of
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this type [17]. Our analysis showed that in the limit of long times, correlation and response
functions are determined by two scaling functions: P(ω), which gives the scaling of the
distribution across trap energies, and M(τ ), which depends on κ and encapsulates the decay
of the observable with scaled time. Both of these are determined by integro-differential
equations which can be solved exactly at T = 0 and by appropriate numerical iteration
procedures otherwise.

We focussed mostly on the Barrat and Mézard trap model which has entropic barriers
that slow its dynamics at low temperature. In section 5, we considered this first for fast
decorrelation, κ = 0, to extend previous results which had been limited to T = 0. The results
already reveal changes in the dynamics at T = 1/2, i.e. half the glass transition temperature
Tg = 1 of the model: for T < 1/2, the aging behaviour is simple, with the average hopping
rate scaling as the inverse of the age, while for T > 1/2 a power-law scaling obtains which is
dominated by rare excursions of the system to the top of its energy landscape, i.e. to the shallow
traps. Correspondingly, the initial slope of the FD plot of susceptibility versus correlation
is 1/Teff with Teff = 1/2 for T < 1/2, and 1/T for larger temperatures. The long-time
susceptibility χ(t, tw) for t � tw, i.e. for C(t, tw) → 0, remains constant throughout the
glassy region T < 1, effectively ‘freezing’ to its value at T = 1 as temperature is lowered
through the glass transition.

In section 6, we looked at the complementary case of T = 0 but slow decorrelation,
κ > 0. Here all scaling functions can be found exactly. The initial slope of the FD plot,
1/Teff = 2, remains κ-independent, while the asymptotic (for C → 0) slope 2κ grows linearly
with κ . In the limit κ → 1 of slow decorrelation the two slopes coincide, and the FD plot
becomes a straight line.

Finally, in section 7 we extended the analysis to general decorrelation (κ > 0) and nonzero
temperature. Scaling functions now need to be found numerically, but we were able to predict
the exponents for their power-law decays in closed form. Surprisingly, these exponents depend
on whether Glauber or Metropolis transition rates are used, contrary to the usual expectation
that such choices only have minor quantitative effects. We were able to show explicitly that
the initial slopes of the FD plots are κ-independent, and that in the limit κ → 1 of slow
decorrelation the FD plots become straight lines as argued qualitatively by Junier and Bertin
[17]. Their slopes, coinciding as they must with the κ-independent initial slopes, correspond
to FD relations with an effective temperature Teff = 1/2 for T < 1/2 and equilibrium FDT
for T > 1/2. We discussed in detail the approach to the limit κ → 1; for T > 1/2, this is
discontinuous because rare excursions to the top of the landscape achieve full decorrelation
(and an associated equilibrium response) whenever κ is below unity by a nonzero amount
1 − κ .

We generalized to the Bouchaud trap model, and more broadly any trap model with
rates that are multiplicatively perturbed by the applied field, in section 8. Here it turns out
that straight-line FD plots always have an equilibrium slope of 1/T . However, they do not
necessarily arise even in the limit κ → 1, but rely on a specific assignment of the field
dependence of the transition rates which eliminates the effect of the field on the residence time
in a given trap. This example illustrated that simple arguments for the existence of straight-line
FD relations require some caution because the implicit assumptions can be difficult to justify.

Looking at our results more broadly, it is intriguing to see that slowly decorrelating
observables can produce nontrivial straight-line FD plots in trap models, something which
can otherwise be achieved only by choosing rates that violate detailed balance [10]. The
significance of this is that such plots indicate that the effective temperature is (in the long-
time, non-equilibrium regime) independent of the pair of observation times; this is one of the
plausible requirements for Teff to be a physically meaningful quantity. What remains unclear
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to us is why the notional ‘glass transition’ temperature which slowly decorrelating observables
seem to measure in trap models is half the usual glass transition temperature Tg (=1 in our
units). One way of interpreting this result [17] is that slowly decorrelating observables only
pick up non-equilibrium effects caused by entropic rather than energetic barriers. Alternatively,
one could argue that slowly decorrelating observables detect only persistently slow dynamics.
As soon as the system begins to exhibit intermittent behaviour, where episodes of fast dynamics
in the effectively equilibrated parts of phase space alternate with periods of slow wandering
around regions of low energy, effective equilibrium FD relations are recovered. Slowly
decorrelating observables can thus help us to single out parts of the dynamics which can be
meaningfully associated with an effective temperature, but by the same token can be blind
to other aspects of the dynamics that remain clearly out of equilibrium. How this trade-off
operates in other glassy systems is certainly worthy of further study. One challenge will
be to integrate finite spatial dimensionality into the picture. One expects, for example, that
the dynamics will then effectively decompose into that of independent subsystems whose
finite size is set by a time-dependent correlation length [25]. Decorrelation can then not be
arbitrarily slow: if each subsystem contains Neff degrees of freedom, say, one would expect
κ < 1 − O(1/Neff). The limit of slow decorrelation we focussed on here would then require
relatively large correlated subsystems.
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